Mark-specific additive hazards regression with continuous marks
نویسندگان
چکیده
منابع مشابه
Proportional Hazards Models with Continuous Marks.
For time-to-event data with finitely many competing risks, the proportional hazards model has been a popular tool for relating the cause-specific outcomes to covariates [Prentice et al. Biometrics34 (1978) 541-554]. This article studies an extension of this approach to allow a continuum of competing risks, in which the cause of failure is replaced by a continuous mark only observed at the failu...
متن کاملMark-specific proportional hazards model with multivariate continuous marks and its application to HIV vaccine efficacy trials.
For time-to-event data with finitely many competing risks, the proportional hazards model has been a popular tool for relating the cause-specific outcomes to covariates (Prentice and others, 1978. The analysis of failure time in the presence of competing risks. Biometrics 34, 541-554). Inspired by previous research in HIV vaccine efficacy trials, the cause of failure is replaced by a continuous...
متن کاملHigh-Dimensional Sparse Additive Hazards Regression
High-dimensional sparse modeling with censored survival data is of great practical importance, as exemplified by modern applications in high-throughput genomic data analysis and credit risk analysis. In this article, we propose a class of regularization methods for simultaneous variable selection and estimation in the additive hazards model, by combining the nonconcave penalized likelihood appr...
متن کاملRegression Analysis for the Additive Hazards Model with Covariate Errors
This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date...
متن کاملAdditive hazards regression with censoring indicators missing at random.
In this article, the authors consider a semiparametric additive hazards regression model for right-censored data that allows some censoring indicators to be missing at random. They develop a class of estimating equations and use an inverse probability weighted approach to estimate the regression parameters. Nonparametric smoothing techniques are employed to estimate the probability of non-missi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lifetime Data Analysis
سال: 2016
ISSN: 1380-7870,1572-9249
DOI: 10.1007/s10985-016-9369-9